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Abstract
We give details of calculations analysing the proposed mirror superposition
experiment of Marshall, Simon, Penrose and Bouwmeester within different
stochastic models for state vector collapse. We give two methods for exactly
calculating the fringe visibility in these models, one proceeding directly from
the equation of motion for the expectation of the density matrix, and the other
proceeding from solving a linear stochastic unravelling of this equation. We
also give details of the calculation that identifies the stochasticity parameter
implied by the small-displacement Taylor expansion of the CSL model density
matrix equation. The implications of the two results are briefly discussed.
Two pedagogical appendices review mathematical apparatus needed for the
calculations.

PACS numbers: 03.65.Ta, 03.65.Yz, 05.40.−a

1. Introduction

There is currently much interest in experiments to create quantum superposition states
involving large numbers of particles, with the ultimate aim of testing whether quantum
superpositions of macroscopic systems can be observed. Recently, Marshall, Simon, Penrose
and Bouwmeester [1], motivated by suggestions of Penrose [2], have proposed a novel
interferometric experiment in which a single photon interacts with a miniature mirror mounted
on a cantilever in one arm of the interferometer, thus setting up a superposition of states
containing of order 1014 atoms. Since the two superposed states in this experiment have
a relative centre-of-mass displacement of order the width of the mirror centre-of-mass
wave packet ∼σ ∼ 10−11 cm, the experiment will place new constraints on proposals for
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modifications to quantum mechanics in which the centre-of-mass displacement is the key
parameter.

Among the different proposals, collapse models [3–6] have been extensively studied. The
basic idea is to combine the standard Schrödinger evolution and the postulate of wavepacket
reduction into one universal dynamical equation, which is assumed to govern all physical
processes. Such a dynamics accounts both for the quantum properties of microscopic
systems and for the classical properties of macroscopic ones; in particular, it guarantees
that measurements made on microscopic systems always have definite outcomes, and with the
correct quantum probabilities (Born probability rule).

In a recent letter [7], we have analysed the Marshall et al experiment within the framework
of the GRW [3], CSL [4] and QMUPL [5] models, and have shown that—within the CLS
model, which predicts the largest deviation from standard quantum predictions—one expects
the maintenance of coherence to better than 1 part in 108. Our aim in this paper is to give the
derivations of formulae presented, without derivation, in our letter. In section 2 we give the
basic equations for the Marshall et al experiment, first as formulated in their paper, and then
as formulated within the collapse models. In section 3 we solve for the visibility (the physical
quantity measured in the experiment) by direct calculation from the density matrix evolution
equation, making use of the interaction picture, the Baker–Hausdorff formula, and cyclic
permutation under a trace. In section 4 we give an alternative derivation of the visibility,
obtained by solving a linear stochastic unravelling of the density matrix equation, using the
Itô stochastic calculus. In section 5 we compute the stochasticity parameter entering into the
visibility formula in terms of the parameters of the CSL model. We briefly summarize our
results and their application to the Marshall et al experiment in section 6. In appendix A we
derive the Baker–Hausdorff formula used in the text, and in appendix B we review the Itô
calculus formulae used in the calculation of section 4.

2. Basic formalism

The Hamiltonian for the Marshall et al experiment, with the moving mirror in a cavity in
interferometer arm A, is [8]

H = h̄ωc

(
a
†
AaA + a

†
BaB

)
+ h̄ωmb†b − h̄Ga

†
AaA(b + b†). (1)

Here ωc is the frequency of the photon, a
†
A and a

†
B are the creation operators for the photon

in the interferometer arms A and B, respectively, while ωm and b† are the frequency and the
phonon creation operator associated with motion of the centre of mass of the mirror. The
coupling constant is G = ωcσ/L, where L is the length of the cavity, with σ = (h̄/2Mωm)

1
2

the width of the mirror wave packet and M the mass of the mirror.
The semi-silvered beam splitter of the interferometer places the photon in an initial state

that is an equal superposition of being in arm A or B,

|ψ0〉 = 1√
2
[|0〉A|1〉B + |1〉A|0〉B]|0〉m, (2)

and standard quantum mechanics predicts that at time t the state vector will be

|ψt 〉 = e− i
h̄
H t |ψ0〉 = 1√

2
e−iωct [|0〉A|1〉B |0〉m + eiκ2(ωmt−sin ωmt)|1〉A|0〉B |αt 〉m]. (3)

Here we have written κ = G/ωm and |αt 〉m denotes a unit normalized mirror coherent state
with complex amplitude αt = κ(1 − e−iωmt ). While in state |0〉m the mirror is fixed at its
equilibrium position (the origin of the reference frame), in state |αt 〉m the mirror oscillates
between 0 and � ≡ 4κσ ; in both cases, the shape of the wavefunction (in position) is a
Gaussian of width σ .
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The physically measurable quantity considered by Marshall et al is the maximum
interference visibility for the photon ν(t), defined as twice the modulus of the off-diagonal
element of the reduced density matrix of the photon. The full density matrix for the system is

ρ = |ψt 〉〈ψt |
= 1

2 [|0〉AA〈0||1〉BB〈1||0〉mm〈0| + |1〉AA〈1||0〉BB〈0||αt 〉mm〈αt |
+ eiκ2(ωmt−sin ωmt)|1〉AA〈0||0〉BB〈1||αt 〉mm〈0|
+ e−iκ2(ωmt−sin ωmt)|0〉AA〈1||1〉BB〈0||0〉mm〈αt |]. (4)

Thus after tracing over the mirror states, the reduced density matrix has as the coefficient of
the off-diagonal term |1〉AA〈0||0〉BB〈1| the factor 1

2f , with

f = eiκ2(ωmt−sin ωmt)
m〈0|αt 〉m, (5)

which using m〈0|αt 〉m = e− 1
2 |αt |2 gives

f = eiκ2(ωmt−sin ωmt) e−κ2(1−cos ωmt). (6)

Thus, under standard quantum mechanical evolution of the state, one has for the time
dependence of the visibility

ν(t) = e−κ2(1−cos ωmt). (7)

According to the above formula, the visibility starts from its maximal value 1; it then decreases,
but after half a period of the mirror’s motion it increases again, reaching the maximal value
after one period T = 2π/ωm. The strategy to test the macroscopic superposition of the mirror
then goes as follows. One measures the photon’s visibility after one period T: if it is close to
1, then no collapse of the mirror’s wavefunction has occurred; if on the contrary it is smaller
than 1, a spontaneous collapse process is present which reduces the superposition to one of
its two terms. Of course, one must keep control of all sources of decoherence, which tend to
lower the observed visibility.

We proceed now to reanalyse the experiment using the modified Schrödinger evolution
of the QMUPL model of wavefunction collapse [5]; this model is particularly useful since,
as we shall prove, it allows one to get an exact formula for the visibility when a spontaneous
collapse mechanism is present. Moreover, this model corresponds to the leading term in
the small-displacement Taylor expansion of both the GRW and the CSL models; such an
expansion is particularly suitable to the present case since, according to the parameters of the
experiment, the maximum displacement between the two superposed states of the mirror is
of order 10−11 cm, which is much smaller than the typical distance of 10−5 cm required for
quantum superpositions to be destroyed, in the GRW and CSL models. Under the QMUPL
model, the state vector evolves as

d|ψt 〉 =
[
− i

h̄
H dt +

√
η(q − 〈q〉t ) dWt − η

2
(q − 〈q〉t )2 dt

]
|ψt 〉, (8)

where H is given by equation (1), and 〈q〉t ≡ 〈ψt |q|ψt 〉 is the quantum-mechanical expectation
of the position operator q = σ(b + b†) associated with the centre of mass of the mirror. The
stochastic dynamics is governed by a standard Wiener process Wt , defined on a probability
space (�,F, P). Using the rules of the Itô calculus (see appendix B), the density matrix
evolution corresponding to equation (8) is

dρ̂ = − i

h̄
[H, ρ̂] dt − 1

2
η[q, [q, ρ̂]] dt +

√
η[ρ̂, [ρ̂, q]] dWt. (9)
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Since to observe interference fringes experimentally requires passing to an ensemble of
identically prepared photons through the apparatus, the relevant density matrix in the stochastic
case is the ensemble expectation ρ = E[ρ̂], which obeys the ordinary differential equation

dρ

dt
= − i

h̄
[H, ρ] − 1

2
η[q, [q, ρ]]

= − i

h̄
[H, ρ] − 1

2
ησ 2[b + b†, [b + b†, ρ]]. (10)

Defining an off-diagonal density matrix ρOD acting in the mirror Hilbert subspace by
A〈1|B〈0|ρ|0〉A|1〉B = 1

2ρOD, so that the factor f introduced above is TrmρOD, we can project
out from equation (10) the evolution equation for ρOD,

dρOD(t)

dt
= −iHAρOD(t) + iρOD(t)HB − 1

2
ησ 2[b + b†, [b + b†, ρOD(t)]], (11)

with h̄HA the effective mirror Hamiltonian acting when the photon passes through
interferometer arm A, and with h̄HB the corresponding effective mirror Hamiltonian acting
when the photon passes through arm B,

HA = ωmb†b − G(b + b†) HB = ωmb†b. (12)

We must now solve the dynamics represented by equations (11) and (12), or equivalently
by equation (10), so as to calculate TrmρOD and obtain the visibility. Additionally, we
must calculate the stochasticity parameter η entering into equations (8)–(11) in terms of the
parameters of the CSL model. These are the issues addressed in the following three sections.

3. Direct solution for the visibility from the density matrix evolution equation

In this section we give a calculation of the mean visibility directly from the density matrix
equation of motion. An essential identity in everything that follows is the Baker–Hausdorff
identity, derived in appendix A,

e−iHAteiHBt = Nt eαt b
†
eβt b, (13)

with HA and HB as given in equation (12), and with

Nt = e−κ2(1−iωmt−e−iωmt )

= e−κ2(1−cos ωmt)+iκ2(ωmt−sin ωmt)

αt = κ(1 − e−iωmt )

βt = −κ(1 − eiωmt ).

(14)

Defining the photon off-diagonal part of the density matrix ρOD as in section 2, which obeys
the evolution equation of equation (11), the visibility is ν = |TrmρOD|; thus what is needed is
to calculate TrmρOD.

Let us now go to the interaction picture by defining

ρI
OD(t) = eiHAtρOD(t) e−iHBt , (15)

so that ρI
OD(0) = ρOD(0) = |0〉mm〈0|. The corresponding differential equation obeyed by ρI

OD
is

dρI
OD(t)

dt
= −1

2
ησ 2 eiHAt [b + b†, [b + b†, ρOD(t)]] e−iHBt . (16)

Multiplying from the left by e−iHAu and from the right by eiHBu, we get the differential equation

e−iHAu dρI
OD(t)

dt
eiHBu = −1

2
ησ 2 eiHA(t−u)[b + b†, [b + b†, ρOD(t)]] e−iHB(t−u). (17)
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Now take Trm of this equation, and use cyclic invariance, to get

d

dt
Trm e−iHAuρI

OD(t) eiHBu = −ησ 2

2
Trm

{
[b + b†, [b + b†, e−iHB(t−u) eiHA(t−u)]]ρOD(t)

}
.

(18)

Taking the adjoint of equation (13) and setting t → −t , we get

eiHBt e−iHAt = Nt eβt b
†
eαt b, (19)

from which we easily calculate that the double commutator in equation (18) is

[b + b†, [b + b†, e−iHB(t−u) eiHA(t−u)]]

= (βu−t − αu−t )
2 e−iHB(t−u) eiHA(t−u)

= 4κ2(1 − cos ωm(u − t))2 e−iHB(t−u) eiHA(t−u). (20)

Substituting this into equation (18), and using cyclic invariance of the trace and
equation (15), then gives

d

dt
Trm e−iHAuρI

OD(t) eiHBu = −2η(κσ)2(1 − cos ωm(u − t))2 Trm e−iHAuρI
OD(t) eiHBu, (21)

which can be immediately integrated to give

Trm e−iHAuρI
OD(t) eiHBu = e−2η(κσ)2

∫ t

0 dv(1−cos ωm(u−v))2
Trm e−iHAuρI

OD(0) eiHBu. (22)

Setting u = t in this equation, and using equation (15) and cyclic invariance of the trace
together with equation (19), we get

f = TrmρOD(t)

= e−2η(κσ)2
∫ t

0 dv(1−cos ωm(t−v))2
Trm e−iHAtρI

OD(0) eiHBt

= e−2η(κσ)2
∫ t

0 dv(1−cos ωmv)2

m〈0|N eβt b
†
eαt b|0〉m

= e− 3
16 η�2

(
t− 4

3
sin ωmt

ωm
+ sin 2ωmt

6ωm

)
e−κ2(1−cos ωmt)+iκ2(ωmt−sin ωmt). (23)

Finally, taking the absolute value of equation (23), we get for the visibility

ν(t) = exp[−κ2(1 − cos ωmt)] × exp

[
− 3

16
η�2

(
t − 4

3

sin ωmt

ωm

+
sin 2ωmt

6ωm

)]
. (24)

Equations (23) and (24) are the results that we quoted in [7].

4. Solution for the visibility by a stochastic unravelling method

In this section we give an alternate derivation of equation (24), using stochastic methods
to solve equation (10). We exploit the property that although equation (8) for the stochastic
evolution of the state vector uniquely implies the evolution of equation (10) for the expectation
density matrix ρ, this relationship is not one to one: there are in fact an infinite number of
different stochastic evolutions (or unravellings) which imply equation (10) for the evolution
of their expectations [9]. In particular, a simple calculation using the Itô calculus shows that
the linear stochastic equation

d|ψt 〉 =
[
− i

h̄
H dt + i

√
ηq dWt − η

2
q2 dt

]
|ψt 〉 (25)

also has equation (10) for the evolution equation for ρ = E[|ψt 〉〈ψt |]. This means that, as
long as one is interested only in the statistical properties of the system—i.e. expectation values
like TrmρOD(t) and the visibility—one can choose freely to work either with the stochastic
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evolution of equation (8) or with the stochastic evolution of equation (25). Of course, for
individual realizations of the stochastic process, the two equations (8) and (25) imply radically
different dynamics; in particular, equation (8) induces the collapse of the wavefunction, while
equation (25) does not. However, for all physical quantities that depend only on the expectation
of the density matrix, the two evolutions give the same answer.

Let us then resort to equation (25), since it is linear. According to this equation, the initial
state (2) evolves as follows:

|ψt 〉 = 1√
2

e−iωct
[|0〉A|1〉B

∣∣φ0
t

〉
m

+ |0〉A|1〉B
∣∣φ1

t

〉
m

]
, (26)

where the state vectors
∣∣φ0

t

〉
m

and
∣∣φ1

t

〉
m

satisfy the following stochastic differential equation
for the mirror centre of mass5:

dφn
t (x) =

[
ih̄

2M

d2

dx2
dt − iMω2

m

2h̄
x2 dt + ingx dt + i

√
ηx dWt − η

2
x2 dt

]
φn

t (x), (27)

with n = 0, 1, and with the coupling constant g = G/σ . We now have to find the solution for
the initial condition

∣∣φn
0

〉
m

= |0〉m.
We take as a trial solution,

φn
t (x) =

(
Mωm

πh̄

) 1
4

exp
[−an

t x2 + bn
t x + cn

t

]
, (28)

and by substituting it into equation (27) and using the rules of the Itô calculus, we get the
following set of equations for the parameters an

t , bn
t and cn

t ,

dan
t = −2ih̄

M

(
an

t

)2
dt +

iMω2
m

2h̄
dt an

0 = Mωm

2h̄
,

dbn
t =

[
ing − 2ih̄

M
bn

t a
n
t

]
dt + i

√
η dWt bn

0 = 0,

dcn
t = ih̄

2M

[(
bn

t

)2 − 2an
t

]
dt cn

0 = 0. (29)

The first two equations can be easily integrated and one gets

an
t = Mωm

2h̄
, bn

t = ng

ωm

[
1 − e−iωmt

]
+ i

√
η

∫ t

0
e−iωm(t−s) dWs. (30)

The factor f previously introduced can be written as

f =
∫ +∞

−∞
E

[
φ0

t (x)∗φ1
t (x)

]
dx. (31)

We reverse the two operations of computing the statistical average E[. . .] and of taking the
partial trace; the integration over x gives∫ +∞

−∞
φ0

t (x)∗φ1
t (x) dx = exp

[(
b0∗

t + b1
t

)2

8at

+ c0∗
t + c1

t

]
. (32)

As the final step, we have to take the average of equation (32) with respect to the noise. To
this end, we compute the stochastic differential of the exponent, obtaining after some algebra

d

[(
b0∗

t + b1
t

)2

8at

+ c0∗
t + c1

t

]
= ih̄

2Mω2
m

g2[1 − e−iωmt ] dt +
i
√

ηh̄g

Mωm

zt dt, (33)

5 We have rewritten the Hamiltonian of equation (1) in terms of the mirror centre-of-mass coordinate x, by re-
expressing b and b† in terms of x and −ih̄ d/dx.
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where zt is the stochastic process given by the formula

zt =
∫ t

0
sin ωm(t − s) dWs. (34)

The form of the stochastic integral of equation (34) is such that zt is a Gaussian stochastic
process with zero mean, while the correlation function is

K(t, s) = E[ztzs] =
∫ min(t,s)

0
sin ωm(t − u) sin ωm(s − u) du. (35)

Equation (33) shows that, as expected, f is the product of a ‘deterministic’ part fD , which
does not depend on the noise zt , and a ‘stochastic’ part fS which depends on the noise. The
deterministic part gives the result of equation (6),

fD = exp

[
ih̄

2Mω2
m

g2
∫ t

0
(1 − e−iωms) ds

]

= eiκ2(ωmt−sin ωmt) e−κ2(1−cos ωmt). (36)

We now have to compute the stochastic part,

fS = E

[
exp

(
i
√

ηh̄g

Mωm

∫ t

0
zs ds

)]
. (37)

One easily recognizes, in the above formula, the definition of the characteristic functional
�[kt ] of the Gaussian stochastic process zt , with kt = √

ηh̄g/Mωm. One then has,

fS = exp

[
−η

2

(
h̄g

Mωm

)2 ∫ t

0
ds1

∫ t

0
ds2K(s1, s2)

]

= exp

[
− 3

16
η�2

(
t − 4

3ωm

sin ωmt +
1

6ωm

sin 2ωmt

)]
(38)

with � = 4κσ the maximum excursion of the mirror centre of mass in its oscillation.
(A derivation of equation (38) directly from the Itô calculus is given in appendix B.) The
final result for the visibility ν = |f | is thus

ν(t) = exp[−κ2(1 − cos ωmt)] exp

[
− 3

16
η�2

(
t − 4

3

sin ωmt

ωm

+
sin 2ωmt

6ωm

)]
(39)

as also obtained by the method of section 3.

5. Calculation of the stochasticity parameter from the CSL model

In this section we calculate the stochasticity parameter η appearing in equation (8), in terms of
parameters that appear in the CSL model for state vector collapse, which applies to systems of
identical particles treated by a field-theoretic approach (for a similar calculation based on prop-
erties of the complementary error function, see Ghirardi, Pearle, and Rimini [4], appendix C).
The relevant CSL equation, taken from equations (8.23) and (8.24) of the review of Bassi and
Ghirardi [6], can be written as

∂

∂t
〈Q′|ρ|Q′′〉 = −�(Q′, Q′′)〈Q′|ρ|Q′′〉, (40)

where

�(Q′, Q′′) = 1

2
γ

∫
d3x[F(Q′ − x) − F(Q′′ − x)]2, (41)
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and where

F(z) =
∫

d3yD(y)
( α

2π

) 3
2

e−(α/2)(z+y)2
. (42)

Letting d = Q′ − Q′′ and using translation invariance and space inversion symmetry, we can
rewrite equation (41) as

�(Q′, Q′′) = 1

2
γ

∫
d3x[F(x + d) − F(x)]2, (43)

so that the Taylor expansion gives for the leading small-displacement term (with summation
on i, j understood)

�(Q′, Q′′) 
 1

2
γ

∫
d3x didj

∂

∂xi

F (x)
∂

∂xj

F (x). (44)

We now use the fact that, acting on the exponential within the integral of equation (42), ∂
∂zi

is equivalent to ∂
∂yi

, which can be integrated by parts to act on the density D. Since for density
distributions with cubic or higher symmetry we expect the coefficient of didj in equation (44)
to be proportional to δij , we can extract this coefficient by replacing didj by δij d2/3, giving

�(Q′, Q′′) 
 1
2γCd2, (45)

with the coefficient C given by

C = 1

3

( α

2π

)3
∫

d3y

∫
d3w ∂iD(y)∂iD(w)

∫
d3x e−(α/2)[(x+y)2+(x+w)2]. (46)

We can now complete the square in the exponent,

(x + y)2 + (x + w)2 = 2
[
x + 1

2 (y + w)
]2

+ 1
2 (y − w)2, (47)

which allows us to do the x integration, giving

C = 1

24

(α

π

) 3
2

∫
d3y

∫
d3w ∂iD(y)∂iD(w) e−(α/4)(y−w)2

. (48)

Let us now assume a cubical volume of uniform density D0 and side S, so that we can take

D(w) = D0

3∏
i=1

θ(wi + S/2)θ(S/2 − wi). (49)

The three terms summed over i in equation (48) give equal contributions, so we have

C = 1

8
D2

0

(α

π

)3/2
I12I3, (50)

with

I12 =
∫ S/2

−S/2
· · ·

∫ S/2

−S/2
dy1 dy2 dw1 dw2 e−(α/4)(y1−w1)

2
e−(α/4)(y2−w2)

2
, (51)

and with

I3 =
∫ ∞

−∞
dy3

∫ ∞

−∞
dw3[δ(y3 + S/2) − δ(S/2 − y3)][δ(w3 + S/2)

−δ(S/2 − w3)] e−(α/4)(y3−w3)
2
. (52)

When S2α � 1, we can use the fact that the exponentials are sharply peaked to get the
approximations

I12 
 S24π/α I3 
 2, (53)
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giving

C 
 D2
0S

2
(α

π

)1/2
. (54)

This identifies the parameter η appearing as the coefficient of the [q, [q, ρ]] term in the density
matrix equation of motion (10) as

η = γC = γ S2D2
0

(α

π

)1/2
, (55)

as used in equation (14) of [7].
As a consistency check, let us use equation (55) to determine the transition regime from

quadratic growth of � to linear growth. For |d|α1/2 � 1, we know (see Bassi and Ghirardi [6],
p 326) that � is given by the formula � = γ noutD0, with nout the number of nucleons in the
displaced cube not lying in the original cube, which is clearly (for a third axis displacement)
given by |d|S2D0. So equating (1/2)γ S2D2

0(α/π)1/2|d|2 = γ |d|S2D2
0, we find that the

transition from quadratic to linear growth occurs at |d| = 2(π/α)1/2, which is of the order of
the width of the Gaussians and so is reasonable.

6. Discussion

To summarize, we have given details of the calculation of the stochastic reduction in the
visibility implied by equations (8)–(10), leading to the visibility formula of equations (24) and
(39), as well as details of the calculation of the stochasticity parameter η implied by the CSL
model, leading to the formula of equation (55). As already discussed, in the absence of the
stochastic reduction, the visibility as given by equation (7) starts at 1 at time t = 0, decreases
as t increases, and then returns to 1 at t = 2π/ωm, at which point the mirror has completed one
period of its oscillation. By contrast, with stochasticity present, we learn from equations (24)
and (39) that at time t = 2π/ωm the mirror visibility is damped by a factor e−�, with

� = (3/16)η�2(2π/ωm). (56)

Combining this formula with equation (55), in the CSL model we get

� = (3/16)γ S2D2
0

(α

π

)1/2
�2(2π/ωm). (57)

As shown in [7], which gives a detailed discussion of the physical context, for the parameter
values appropriate to the CSL model and the Marshall et al experiment, equation (57) gives
� ∼ 0.2 × 10−8, indicating that according to the CSL model, coherence is maintained to
an accuracy of better than one part in 108. Thus the Marshall et al experiment is orders of
magnitude away from a capability of testing spontaneous collapse models for state vector
reduction.
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Appendix A. Baker–Hausdorff formulas

We derive here the Baker–Hausdorff formula of equations (13)–(14). Let us define the unitary
evolution operator

U = e−iHAt , (A1)

and the corresponding interaction picture operator

UI = eiHBtU = eiHBt e−iHAt . (A2)

The operator UI obeys the equation of motion

dUI

dt
= eiHBt i(HB − HA) e−iHBtUI

= eiHBt iG(b + b†) e−iHBtUI

= [A(t) + B(t)]UI , (A3)

where we have defined

A(t) = iG eiHBtb e−iHBt = iG e−iωmtb, B(t) = iG eiHBtb† e−iHBt = iG eiωmtb†. (A4)

These obey the commutators

[A(s),A(t)] = [B(s), B(t)] = 0, [A(s), B(t)] = −G2 exp[−iωm(s − t)], (A5)

all of which are c-numbers. Integrating equation (A3) with respect to t, and using UI (0) = 1,
we get

UI (t) = T exp

[∫ t

0
ds (A(s) + B(s))

]
, (A6)

where T orders later times to the left.
Consider now the operator W defined as

W = exp

[∫ t

0
dsB(s)

]
exp

[∫ t

0
dsA(s)

]
, (A7)

which obeys

dW

dt
= exp

[∫ t

0
dsB(s)

]
[B(t) + A(t)] exp

[∫ t

0
dsA(s)

]

=
{
B(t) + exp

[∫ t

0
dsB(s)

]
A(t) exp

[
−

∫ t

0
dsB(s)

]}
W. (A8)

Now for general u we have

d

dt
exp

[∫ t

0
dsB(s)

]
A(u) exp

[
−

∫ t

0
dsB(s)

]

= exp

[∫ t

0
dsB(s)

]
[B(t), A(u)] exp

[
−

∫ t

0
dsB(s)

]
= [B(t), A(u)], (A9)

where we have used the fact that the commutator [B(t), A(u)] is a c-number. Integrating on
t, this gives

exp

[∫ t

0
dsB(s)

]
A(u) exp

[
−

∫ t

0
dsB(s)

]
= A(u) +

∫ t

0
ds[B(s), A(u)], (A10)
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and now setting u = t we get

exp

[∫ t

0
dsB(s)

]
A(t) exp

[
−

∫ t

0
dsB(s)

]
= A(t) +

∫ t

0
ds[B(s), A(t)]. (A11)

Comparing with equation (A8), we have obtained

dW

dt
=

(
A(t) + B(t) +

∫ t

0
ds[B(s), A(t)]

)
W, (A12)

and comparing this with equations (A3) and (A6) for UI , we get6

UI = W exp

(
−

∫ t

0
du

∫ u

0
ds[B(s), A(u)]

)
. (A13)

Multiplying equation (A2) from the left by e−iHBt and from the right by eiHBt , we then get

e−iHAt eiHBt = e−iHBtUI eiHBt

= e−iHBt exp

[∫ t

0
dsB(s)

]
eiHBte−iHBt

× exp

[∫ t

0
dsA(s)

]
eiHBt exp

(
−

∫ t

0
du

∫ u

0
ds[B(s), A(u)]

)

= exp

[
e−iHBt

∫ t

0
dsB(s) eiHBt

]
exp

[
e−iHBt

∫ t

0
dsA(s) eiHBt

]

× exp

(
−

∫ t

0
du

∫ u

0
ds[B(s), A(u)]

)

= exp

[∫ t

0
ds iG eiωms e−iHBtb† eiHBt

]

× exp

[∫ t

0
ds iG e−iωms e−iHBtb eiHBt

]
exp

(
−

∫ t

0
du

∫ u

0
ds G2 eiωm(s−u)

)

= exp

[∫ t

0
ds iG eiωms e−iωmtb†

]
exp

[∫ t

0
ds iG e−iωms eiωmtb

]

× exp

(
−

∫ t

0
du

∫ u

0
ds G2 eiωm(s−u)

)
= exp[κ(1 − e−iωmt )b†] exp[−κ(1 − eiωmt )b] exp[−κ2(1 − iωmt − e−iωmt )],

(A14)

which is equation (14) of section 3.

Appendix B. Basic Itô calculus formulas

The stochastic differential dWt behaves heuristically as a random square root of dt , as expressed
in the Itô calculus rules

dW 2
t = dt, dWt dt = dt2 = 0. (B1)

As a consequence of equation (B1), the Leibniz chain rule of the usual calculus is modified to

d(AB) = dAB + A dB + dAdB, (B2)

6 This derivation follows appendix 4A of [10]. However, the final result as given there in equation (4A.10) has the
wrong sign in front of the exponent involving the commutator of A and B (the − should be a +).
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and thus in differentiating a function f (A), one has

df (A) = f (A + dA) − f (A) = f ′(A) dA + 1
2f ′′(A)(dA)2. (B3)

These formulae are used in the calculations leading to equations (29) and (33) of section 4.
The Itô differential dWt is statistically independent of the random process up to time t, so

we have the definition

E[dWtC(t)] = 0 (B4)

for any stochastic process C(t) constructed from dWs with s � t . From equations (B1)–(B4),
we get useful formulae for expectations of integrals. Consider first

f (t) = E

[∫ t

0
dWuA(u)

∫ t

0
dWuB(u)

]
, (B5)

which has the differential

df (t) = E

[
dWtA(t)

∫ t

0
dWuB(u)

+

(∫ t

0
dWuA(u)

)
dWtB(t) + A(t)B(t) dt

]
= E[A(t)B(t)] dt, (B6)

which integrates back to give

E

[∫ t

0
dWuA(u)

∫ t

0
dWuB(u)

]
=

∫ t

0
duE[A(u)B(u)], (B7)

a formula called the Itô isometry. When A(u) and B(u) have differing domains of support
DA and DB , the integral on the right-hand side of equation (B7) clearly extends only over
the intersection DA ∩ DB . Applying equation (B7) to the definition of zt in equation (34)
immediately gives the formula for the correlation function K(t, s) of equation (35). Consider
next the expectation

f (t) = E

[
exp

(∫ t

0
�(u, v) dWv

)]
. (B8)

Its differential is, by equation (B3),

df = E

[
exp

(∫ t

0
�(u, v) dWv

)(
�(u, t) dWt +

1

2
�(u, t)2 dt

)]

= 1

2
f (t)�(u, t)2 dt, (B9)

which integrates back to give

E

[
exp

(∫ t

0
�(u, v) dWv

)]
= exp

(
1

2

∫ t

0
dv �(u, v)2

)
. (B10)

In particular, setting u = t we get the useful formula

E

[
exp

(∫ t

0
�(t, v) dWv

)]
= exp

(
1

2

∫ t

0
dv�(t, v)2

)
. (B11)

As an application of equation (B11), consider the expectation g(t) = E
[

exp
(
C

∫ t

0 zsds
)]

,
with zt given by equation (34). Since∫ t

0
zs ds =

∫ t

0
ds

∫ s

0
sin ωm(s − v) dWv

=
∫ t

0
dWv

∫ t

v

ds sin ωm(s − v)

=
∫ t

0
ω−1

m [1 − cos ωm(t − v)] dWv, (B12)
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the expectation g(t) has the form of equation (B11), with �(t, v) = Cω−1
m [1−cos ωm(t −v)],

and we have

g(t) = exp

(
C2

2ω2
m

∫ t

0
[1 − cos ωm(t − v)]2 dv

)
, (B13)

which corresponds to the integral appearing in equation (23). An alternative expression for
g(t) is obtained by using the formula �(t, v) = C

∫ t

v
ds sin ωm(s − v), which gives∫ t

0
dv �(t, v)2 = C2

∫ t

0
dv

∫ t

v

ds1

∫ t

v

ds2 sin ωm(s1 − v) sin ωm(s2 − v)

= C2
∫ t

0
ds1

∫ t

0
ds2

∫ min(s1,s2)

0
dv sin ωm(s1 − v) sin ωm(s2 − v)

= C2
∫ t

0
ds1

∫ t

0
ds2K(s1, s2), (B14)

with K the correlation function defined in equation (35). When substituted into equation (B11),
this corresponds to the integral appearing in equation (38).
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